BMW and Daimler partner on autonomous driving, first results of team-up in market by 2024

Global automakers BMW and Daimler will join forces in a new long-term partnership to co-develop automated driving technologies, including levels of automation all the way up to SAE Level 4, which is defined as full self-driving, no human intervention required, but only under exactly defined conditions or domains – steering wheel and brakes not necessarily even present I the car.

This BMW/Daimler partnership includes developing automated driving technologies that precede Level 4, too, including advanced driver assistance features like smart cruise control and automated parking. And while it isn’t in scope of this specific arrangement, the two car makers also say that talks continue about expanding their cooperation to cover highly-automated driving within denser urban areas and in city driving conditions.

It’s a non-exclusive arrangement, which is the new normal in autonomous vehicle technology development, where cross-manufacturer partnerships have been increasingly common, and where we’ve also seen legacy automakers turn with fair frequency to startups and younger technology companies to supplement their in-house development efforts.

Daimler and BMW aim to develop a “scalable platform for automated driving” through their combined efforts, which the companies say is open for participation form both other automakers and tech providers. The resulting platform will also be made available to other OEMs under license.

Independently, Daimler is currently working on deploying its first Level 4/Level 5 self-driving vehicle pilot program in an urban environment in partnership with Bosch, and aims to have that operational this year. BMW’s next big automated driving push will be alongside its iNEXT lines of vehicles, with Level 3 technologies targeted release along with the first of those models in 2021. Both partners expect to implement the results of this partnership specifically in their own respective model series vehicles beginning in 2024, however.

NASA picks a dozen science and tech projects to bring to the surface of the Moon

With the Artemis mission scheduled to put boots on lunar regolith as soon as 2024, NASA has a lot of launching to do — and you can be sure none of those launches will go to waste. The agency just announced 12 new science and technology projects to send to the Moon’s surface, including a new rover.

The 12 projects are being sent up as part of the Commercial Lunar Payload Services program, which is — as NASA Administrator Jim Bridenstine has emphasized strongly — part of an intentional increase in reliance on private companies. If a company already has a component or rover or craft ready to go and meeting a program’s requirements, why should NASA build it from scratch at great cost?

In this case, the selected projects cover a wide range of origins and intentions. Some are repurposed or spare parts from other missions, like the Lunar Surface Electromagnetics Experiment. LuSEE is related to the Park Solar Probe’s STEREO/Waves instrument and pieces from MAVEN, re-engineered to make observations and measurements on the Moon.

moonrangerOthers are quite new. Astrobotic, which was also recently awarded an $80 million contract to develop its Peregrine lunar lander, will now also be putting together a rover, which it calls MoonRanger (no relation to the NES game). This little bot will autonomously traverse the landscape within half a mile or so of its base and map it in 3D.

The new funding from NASA amounts to $5.6 million, which isn’t a lot to develop a lunar rover from scratch — no doubt it’s using its own funds and working with its partner, Carnegie Mellon University, to make sure the rover isn’t a bargain-bin device. With veteran rover engineer Red Whittaker on board, it should be a good one.

“MoonRanger offers a means to accomplish far-ranging science of significance, and will exhibit an enabling capability on missions to the Moon for NASA and the commercial sector. The autonomy techniques demonstrated by MoonRanger will enable new kinds exploration missions that will ultimately herald in a new era on the Moon,” said Whittaker in an Astrobotic news release.

The distance to the lunar surface isn’t so far that controlling a rover directly from the surface is nearly impossible, like on Mars, but if it can go from here to there without someone in Houston twiddling a joystick, why shouldn’t it?

To be clear, this is different from the upcoming CubeRover project and others that are floating around in Astrobotic and Whittaker’s figurative orbits.

“MoonRanger is a 13 kg microwave-sized rover with advanced autonomous capabilities,” Astrobotic’s Mike Provenzano told me. “The CubeRover is a 2 kg shoebox-sized rover developed for light payloads and geared for affordable science and exploration activities.”

While both have flight contracts, CubeRover is scheduled to go up on the first Peregrine mission in 2021, while MoonRanger is TBD.

Another NASA selection is the Planetary Science Institute’s Heimdall, a new camera system that will point downward during the lander’s descent and collect super-high-resolution imagery of the regolith before, during and after landing.

heimdall

“The camera system will return the highest resolution images of the undisturbed lunar surface yet obtained, which is important for understanding regolith properties. We will be able to essentially video the landing in high resolution for the first time, so we can understand how the plume behaves – how far it spreads, how long particles are lofted. This information is crucial for the safety of future landings,” said the project’s R. Aileen Yingst in a PSI release.

The regolith is naturally the subject of much curiosity, since if we’re to establish a semi-permanent presence on the Moon we’ll have to deal with it one way or another. So projects like Honeybee’s PlanetVac, which can suck up and test materials right at landing, or the Regolith Adherence Characterization, which will see how the stuff sticks to various materials, will be invaluable.

RadSatg Deployed w Crop

RadSat-G deployed from the ISS for its year-long mission to test radiation tolerance on its computer systems

Several projects are continuations of existing projects that are great fits for lunar missions. For example, the lunar surface is constantly being bombarded with all kinds of radiation, since the Moon lacks any kind of atmosphere. That’s not a problem for machinery like wheels or even solar cells, but for computers, radiation can be highly destructive. So Brock LaMere’s work in radiation-tolerant computers will be highly relevant to landers, rovers and payloads.

LaMere’s work has already been tested in space via the Nanoracks facility aboard the International Space Station, and the new NASA funding will allow it to be tested on the lunar surface. If we’re going to be sending computers up there that people’s lives will depend on, we better be completely sure they aren’t going to crash because of a random EM flux.

The rest of the projects are characterized here, with varying degrees of detail. No doubt we’ll learn more soon as the funding disbursed by NASA over the next year or so helps flesh them out.

MIT develops tiny ‘walking’ motor that helps more complex robots self-assemble

MIT Micro Robots 0It’s becoming increasingly apparent that robots of the future will be less ‘Wall-E’ and more ‘Voltron meets ant swarm’ – case in point, this new ambulatory motor created by MIT professor Neil Gershenfeld and his students at the school. The motor above is little more than a magnet and coil with some structural parts, but it can ‘walk’ back and forth or make the gears of a more complicated machine move back and forth.

On its own, this little moving microbes is impressive enough, but its real potential lies in what could happen were it to be assembled with others of its ilk, and with other building-block robotics components made up of simple parts, which is the vision of Gershenfeld and his research team. Previously, they’ve already shown that other core components can be assembled from the same limited set of fundamental ingredients, and in future, the idea is that these tiny core machines could actually automatically self-assemble into larger structures capable of carrying out specific tasks.

micro robots 2

These tiny bots can also move gears, which is key in terms of having them build bigger, more context systems. Credit: MIT.

That’s right: This little moving motor and its ilk might one day become part of a system that can become a agricultural robot one minute and a disaster relief bot the next. That’s an end-state that will take a lot of work to achieve, but Gershenfeld is already working with MIT graduate student Will Langford on a machine that combines 3D-printing with automated circuit builds, but that can handle much more sophisticated creation of fully functional robots using only digital blueprints as input.

Automated self-assembly is a tempting carrot in the world of cutting-edge robotics, and it’s obvious why. Here’s hoping they just don’t achieve T-1000 efficacy without proper behavioural limitations in place.

Team studies drone strikes on airplanes by firing them into a wall at 500 MPH

Bird strikes are a very real danger to planes in flight, and consequently aircraft are required to undergo bird strike testing — but what about drones? With UAV interference at airports on the rise, drone strike testing may soon be likewise mandatory, and if it’s anything like what these German researchers are doing, it’ll involve shooting the craft out of air cannons at high speed.

The work being done at Fraunhofer EMI in Freiburg is meant to establish some basic parameters for how these things ought to be tested.

Bird strikes, for example, are tested by firing a frozen poultry bird like a chicken or turkey out of an air cannon. It’s not pretty, but it has to be done. Even so, it’s not a very good analogue to a drone strike.

“From a mechanical point of view, drones behave differently to birds and also weigh considerably more. It is therefore uncertain, whether an aircraft that has been successfully tested against bird strike, would also survive a collision with a drone,” explained Fraunhofer’s Sebastian Schopferer in a news release.

The team chose to load an air cannon up with drone batteries and engines, since those make up most of any given UAV’s mass. The propellers and arms on which they’re mounted are generally pretty light and will break easily — compared with a battery weighing the better part of a kilogram, they won’t add much to the damage.

drone testing

The remains of a drone engine and battery after being propelled into the plate on the left at hundreds of miles per hour.

The drones were fired at speeds from 250 to 570 miles per hour (115 to 255 meters per second by their measurement) at aluminum plates of up to 8 millimeters of thickness. Unsurprisingly, there was “substantial deformation” of the plates and the wingless drones were “completely destroyed.” Said destruction was recorded by a high-speed camera, though unfortunately the footage was not made available.

It’s necessary to do a variety of tests to determine what’s practical and what’s unnecessary or irrelevant — why spend the extra time and money firing the drones at 570 when 500 does the same level of damage? Does including the arms and propellers make a difference? At what speed is the plate in danger of being pierced, necessitating additional protective measures? And so on. A new rig is being constructed that will allow acceleration (and deceleration) of larger UAVs.

With enough testing the team hopes that not only could such things be standardized, but simulations could be built that would allow engineers to virtually test different surfaces or materials without a costly and explosive test rig.

Startups at the speed of light: Lidar CEOs put their industry in perspective

As autonomous cars and robots loom over the landscapes of cities and jobs alike, the technologies that empower them are forming sub-industries of their own. One of those is lidar, which has become an indispensable tool to autonomy, spawning dozens of companies and attracting hundreds of millions in venture funding.

But like all industries built on top of fast-moving technologies, lidar and the sensing business is by definition built somewhat upon a foundation of shifting sands. New research appears weekly advancing the art, and no less frequently are new partnerships minted, as car manufacturers like Audi and BMW scramble to keep ahead of their peers in the emerging autonomy economy.

To compete in the lidar industry means not just to create and follow through on difficult research and engineering, but to be prepared to react with agility as the market shifts in response to trends, regulations, and disasters.

I talked with several CEOs and investors in the lidar space to find out how the industry is changing, how they plan to compete, and what the next few years have in store.

Their opinions and predictions sometimes synced up and at other times diverged completely. For some, the future lies manifestly in partnerships they have already established and hope to nurture, while others feel that it’s too early for automakers to commit, and they’re stringing startups along one non-exclusive contract at a time.

All agreed that the technology itself is obviously important, but not so important that investors will wait forever for engineers to get it out of the lab.

And while some felt a sensor company has no business building a full-stack autonomy solution, others suggested that’s the only way to attract customers navigating a strange new market.

It’s a flourishing market but one, they all agreed, that will experience a major consolidation in the next year. In short, it’s a wild west of ideas, plentiful money, and a bright future — for some.

The evolution of lidar

I’ve previously written an introduction to lidar, but in short, lidar units project lasers out into the world and measure how they are reflected, producing a 3D picture of the environment around them.

Check out the breakout sessions at TC Sessions: Mobility

TC Sessions: Mobility on July 10 in San Jose is fast approaching. Get ready for a superb lineup of speakers like Dmitri Dolgov (Waymo), Eric Allison (Uber) and Summer Craze Fowler (Argo AI). See the full agenda here.

In addition to the outstanding main stage content, TechCrunch is proud to partner with today’s leading mobility players for a full day of breakout sessions. These breakout sessions will give attendees deeper insights into overcoming some of mobility’s biggest challenges and answering questions directly from today’s industry leaders.

Breakout Session Lineup


How much data is needed to make Autonomous Driving a Reality?
Presented by: Scale AI

We are in the early days of autonomous vehicles, and what’s necessary to go into production is still very much undecided. Simply to prove that these vehicles are safer than driving with humans will require more than 1 billion miles driven. Data is a key ingredient for any AI problem, and autonomy is the mother of all AI problems. How much data is really needed to make autonomy safe, reliable, and widespread, and how will our understanding of data change as that becomes a closer reality? Sponsored by Scale AI.


Think Big by Starting Small: Micromobility Implications to the Future of Mobility

Presented by: Deloitte

A host of new micromobility services have emerged to address a broader range of transportation needs – bikesharing, electric scooters and beyond. The urban emergence of micromobility offers powerful lessons on finding the right balance between fostering innovations that will ultimately benefit consumers and broader transportation systems, while safeguarding public interests. Sponsored by Deloitte.


If You Build It, Will They Buy? – The Role of the FleetTech Partner in the Future Mobility Ecosystem with Brendan P. Keegan
Presented by: Merchants Fleet

The future will bring a convergence of new technologies, services, and connectivity to the mobility space – but who will manage and connect it all? Explore how FleetTech is creating the mobility ecosystem to help organizations embrace technologies – adopting your innovations through trials and pilots and bringing them to market. Sponsored by Merchants Fleet.


The Economics of Going Electric: Constructing NextGen EV Business Models
Presented by: ABB

How do we make the rapidly growing EV industry operational and scalable? Join ABB, HPE and Microsoft for a discussion on how government, industry, providers and suppliers are addressing market shifts and identifying solutions to build successful business models that support the future of mobility. Moderated and sponsored by ABB.


Bringing Efficiency to Closed-Course AV Testing with Atul Acharya
Presented by: AAA Northern California, Nevada & Utah

Looking to jump-start or accelerate your automated vehicle test operations? AAA has built its expertise by operating GoMentum Stations and performing safety assessments on multiple AVs and proving grounds. Join AAA as it shares its collective technical and operational learnings and testing results that will bring efficiency to your testing efforts. Sponsored by AAA Northern California, Nevada & Utah.


Friction-Free Urban Mobility
Presented by: Arrive

What does the future of seamless, urban mobility look like? How do mobility-as-a-service providers and connected vehicles work together to power transportation in a smart city? And which platform will aggregate all of the providers? In what promises to be a thought-provoking discussion, Arrive’s COO Dan Roarty will lay the foundation for what a city’s connected future will look like and outline key steps needed to achieve it. Sponsored by Arrive.


Michigan’s Mobility Ecosystem
Presented by: PlanetM

Revolutionary things can happen when some of the brightest minds in technology come together in one room. This Breakout Session will offer key insights into Michigan’s mobility ecosystem: the people, places and resources dedicated to the evolution of transportation mobility. Following a brief discussion, attendees will have the opportunity to connect with the people and companies moving the world forward through technology innovation and collaboration. Sponsored by PlanetM.


We hope to see you at TC Sessions: Mobility on July 10. Tickets are still on sale but selling fast. Book your $395 general admission ticket here. Students, grab a $45 here.

NASA’s Dragonfly will fly across the surface of Titan, Saturn’s ocean moon

NASA has just announced its next big interplanetary mission: Dragonfly, which will deliver a Mars Rover-sized flying vehicle to the surface of Titan, a moon of Saturn with tantalizing life-supporting qualities. The craft will fly from place to place, sampling the delicious organic surface materials and sending high-resolution pictures back to Earth.

Dragonfly will launch in 2026, taking eight years to reach Titan and land (if all goes well) in 2034. So there will be plenty more updates after this one!

The craft will parachute through Titan’s hazy atmosphere and land among its dune-filled equatorial region. It’s equipped with drills and probes to investigate the surface, and of course cameras to capture interesting features and the surrounding alien landscape, flying from place to place using a set of rotors like a drone’s.

We’ve observed Titan from above via the Cassini mission, and we’ve even touched down on its surface briefly with the Huygens probe — which for all we know is still sitting there. But this will be a much more in-depth look at this fascinating moon.

Titan is a weird place. With rivers, oceans, and abundant organic materials on the surface, it’s very like Earth in some ways — but you wouldn’t want to live there. The rivers are liquid methane, for one thing, and if you’re familiar with methane, you’ll know that means it’s really cold there.

dragonfly gifNevertheless, Titan is still an interesting analogue to early Earth.

“We know that Titan has rich organic material, very complex organic material on the surface; there’s energy in the form of sunlight; and we know there’s been water on the surface in the past. These ingredients, that we know are necessary for the development life as we know it are sitting on the surface on Titan,” said principal investigator Elizabeth Turtle. “They’ve been doing chemistry experiments, basically, for hundreds of millions of years, and Dragonfly is designed to go pick up the results of those experiments.”

Don’t expect a flourishing race of methane-dwelling microbes, though. It’s more like going back in time to pre-life Earth to see what conditions may have resulted in the earliest complex self-replicating molecules: the origin of the origin of life, if you will.

dragonfly model

Principal investigator Elizabeth Turtle shows off a 1/4 scale model of the Dragonfly craft.

To do so Dragonfly, true to its name, will be flitting around the surface to collect data from many different locations. It may seem that something the size of a couch may have trouble lifting off, but as Turtle explained, it’s actually a lot easier to fly around Titan than to roll. With a far thicker atmosphere (mostly nitrogen, like ours) and a fraction of Earth’s gravity, it’ll be more like traveling through water than air.

That explains why its rotors are so small — for something that big on Earth, you’d need huge powerful rotors working full time. But even one of these little rotors can shift the craft if necessary (though they’ll want all eight for lift and redundancy).

We’ll learn more soon, no doubt. This is just the opening salvo from NASA on what will surely be years of further highlights, explanations, and updates on Dragonfly’s creation and launch.

“It’s remarkable to think of this rotorcraft flying miles and miles across the organic sand dunes of Saturn’s largest moon, exploring the processes that shape this extraordinary environment,” said NASA associate administrator for science Thomas Zurbuchen. “Titan is unlike any other place in the solar system, and Dragonfly is like no other mission.”

Tiny Robobee X-Wing powers its flight with light

We’ve seen Harvard’s Robobee flying robot evolve for years: After first learning to fly, it learned to swim in 2015, then to jump out of the water again in 2017 — and now it has another trick up its non-existent sleeve. The Robobee X-Wing can fly using only the power it collects from light hitting its solar cells, making it possible to stay in the air indefinitely.

Achieving flight at this scale is extremely hard. You might think that being small, it would be easy to take off and maintain flight, like an insect does. But self-powered flight actually gets much harder the smaller, which puts insects among the most bafflingly marvelous feats of engineering we have encountered in nature.

Oh, it’s easy enough to fly when you have a wire feeding you electricity to power a pair of tiny wings — and that’s how the Robobee and others flied before. It’s only very recently that researchers have accomplished meaningful flight using on-board power or, in one case, a laser zapping an attached solar panel.

robobee chartThe new Robobee X-Wing (named for its 4-wing architecture) achieves a new milestone with the ability to fly with no battery and no laser — only plain full-spectrum light coming from above. Brighter than sunlight, to be fair — but close to real-world conditions.

The team at Harvard’s Microrobotics Laboratory accomplished this by making the power conversion and wing mechanical systems incredibly lightweight — the whole thing weighs about a quarter of a gram, or about half a paper clip. Its power consumption is likewise lilliputian:

Consuming only 110–120 milliwatts of power, the system matches the thrust efficiency of similarly sized insects such as bees. This insect-scale aerial vehicle is the lightest thus far to achieve sustained untethered flight (as opposed to impulsive jumping or liftoff).

That last bit is some shade thrown at its competitors, which by nature can’t quite achieve “sustained untethered flight,” though what constitutes that isn’t exactly clear. After all, this Dutch flapping flyer can go a kilometer on battery power. If that isn’t sustained, I don’t know what is.

In the video of the Robobee you can see that when it is activated, it shoots up like a bottle rocket. One thing they don’t really have space for on the robot’s little body (yet) is sophisticated flight control electronics and power storage that could let it use only the energy it needs, flapping in place.

That’s probably the next step for the team, and it’s a non-trivial one: adding weight and new systems completely changes the device’s flight profile. But give them a few months or a year and this thing will be hovering like a real dragonfly.

The Robobee X-Wing is exhaustively described in a paper published in the journal Nature.

Waymo starts self-driving pick-ups for Lyft riders

Autonomous driving company Waymo has launched its tie-in with Lyft, using a “handful” of vehicles to pick up riders in its Phoenix testing zone, per CNBC. To be eligible, Lyft users requesting a ride have to be doing a trip that both starts and ends in the area of Phoenix that it’s already blocked for for its own autonomous testing.

The number of cars on the road is less than 10, since Waymo plans to eventually expand to 10 total for this trial but isn’t there yet. Those factors combined mean that the number of people who’ll get this option probably isn’t astronomical, but when they are opted in, they’ll get a chance to decide whether to go with the autonomous option via one of Waymo’s vans (with a safety driver on board) or just stick with a traditional Lyft .

Waymo and Lyft announced their partnership back in May, and the company still plans to continue operating its own Waymo One commercial autonomous ride-hailing service alongside the Lyft team-up.

This robot crawls along wind turbine blades looking for invisible flaws

Wind turbines are a great source of clean power, but their apparent simplicity — just a big thing that spins — belie complex systems that wear down like any other, and can fail with disastrous consequences. Sandia National Labs researchers have created a robot that can inspect the enormous blades of turbines autonomously, helping keep our green power infrastructure in good kit.

The enormous towers that collect energy from wind currents are often only in our view for a few minutes as we drive past. But they must stand for years through inclement weather, temperature extremes, and naturally — being the tallest things around — lightning strikes. Combine that with normal wear and tear and it’s clear these things need to be inspected regularly.

But such inspections can be both difficult and superficial. The blades themselves are among the largest single objects manufactured on the planet, and they’re often installed in distant or inaccessible areas, like the many you see offshore.

“A blade is subject to lightning, hail, rain, humidity and other forces while running through a billion load cycles during its lifetime, but you can’t just land it in a hanger for maintenance,” explained Sandia’s Joshua Paquette in a news release. In other words, not only do crews have to go to the turbines to inspect them, but they often have to do those inspections in place — on structures hundreds of feet tall and potentially in dangerous locations.

Using a crane is one option, but the blade can also be orientated downwards so an inspector can rappel along its length. Even then the inspection may be no more than eyeballing the surface.

“In these visual inspections, you only see surface damage. Often though, by the time you can see a crack on the outside of a blade, the damage is already quite severe,” said Paquette.

Obviously better and deeper inspections are needed, and that’s what the team decided to work on, with partners International Climbing Machines and Dophitech. The result is this crawling robot, which can move along a blade slowly but surely, documenting it both visually and using ultrasonic imaging.

A visual inspection will see cracks or scuffs on the surface, but the ultrasonics penetrate deep into the blades, making them capable of detecting damage to interior layers well before it’s visible outside. And it can do it largely autonomously, moving a bit like a lawnmower: side to side, bottom to top.

Of course at this point it does it quite slowly and requires human oversight, but that’s because it’s fresh out of the lab. In the near future teams could carry around a few of these things, attach one to each blade, and come back a few hours or days later to find problem areas marked for closer inspection or scanning. Perhaps a crawler robot could even live onboard the turbine and scurry out to check each blade on a regular basis.

Another approach the researchers took was drones — a natural enough solution, since the versatile fliers have been pressed into service for inspection of many other structures that are dangerous for humans to get around: bridges, monuments, and so on.

These drones would be equipped with high-resolution cameras and infrared sensors that detect the heat signatures in the blade. The idea is that as warmth from sunlight diffuses through the material of the blade, it will do so irregularly in spots where damage below the surface has changed its thermal properties.

As automation of these systems improves, the opportunities open up: A quick pass by a drone could let crews know whether any particular tower needs closer inspection, then trigger the live-aboard crawler to take a closer look. Meanwhile the humans are on their way, arriving to a better picture of what needs to be done, and no need to risk life and limb just to take a look.