Successful launch propels OneWeb to $1.25B in new funding

Following the successful launch and deployment of the first six satellites in a planned constellation of hundreds, OneWeb has raised $1.25 billion in funding to kickstart mass production. It’s a powerful endorsement of and ambitious plan to create an entirely new layer of global connectivity.

To blanket the world in internet, OneWeb means to send up about 650 satellites at first, with a few hundred more later to expand and reinforce coverage. The original schedule has slipped considerably, as is expected in pretty much any space endeavor, but last month’s test launch means they’re ready to move to the next phase: mass manufacture and deployment.

“With the recent successful launch of our first six satellites, near-completion of our innovative satellite manufacturing facility with our partner Airbus, progress towards fully securing our ITU priority spectrum position, and the signing of our first customer contracts, OneWeb is moving from the planning and development stage to deployment of our full constellation,” said CEO Adrian Steckel in a press release.

It isn’t cheap filling low Earth orbit with satellites, though. OneWeb’s craft currently cost about a million dollars each, which when combined with all the other costs of launch and administration, quickly add up to the point where even a three comma round doesn’t cover things. (The company’s total raised is now $3.4 billion.)

But those costs should come down as the company moves to a more efficient manufacturing platform: its own special facility, built with partner Airbus. Part of the cash will be going to putting the finishing touches on that and getting it up to speed.

The current plan is to get enough birds in the air (at a rate of about 30 per monthly launch) to demo connections next year, then offer limited commercial service in 2021. And OneWeb already has its first customer: Talia, a telecom serving Africa and the Middle East.

Of course, OneWeb isn’t without competitors. SpaceX is perhaps the most visible, and plans a constellation of thousands, though with only a pair of prototypes in orbit it’s considerably far behind in logistics. And it may not be able to spare many rockets for its own purposes if it wants to remain solvent for its grander schemes of interplanetary travel and Mars colonization.

Swarm Technologies is aiming for an ultra-low-cost solution, and Ubiquitilink is leveraging new IP to bring satellite connections directly to existing phones — which may end up coexisting with the other satcom and terrestrial telecoms. Who knows? It’s something of an open field right now.

That said, the powers that be are definitely putting a lot of their chips on OneWeb, which has a great team, powerful partners, and a big lead on the competition. This $1.25 billion round was led by Softbank (which telegraphed its continuing investment at the time of the launch) with participation by Grupo Salinas, Qualcomm, and the Government of Rwanda.

Opportunity’s last Mars panorama is a showstopper

The Opportunity Mars Rover may be officially offline for good, but its legacy of science and imagery is ongoing — and NASA just shared the last (nearly) complete panorama the robot sent back before it was blanketed in dust.

After more than 5,000 days (or rather sols) on the Martian surface, Opportunity found itself in Endeavour Crater, specifically in Perseverance Valley on the western rim. For the last month of its active life, it systematically imaged its surroundings to create another of its many impressive panoramas.

Using the Pancam, which shoots sequentially through blue, green, and deep red (near-infrared) filters, it snapped 354 images of the area, capturing a broad variety of terrain as well as bits of itself and its tracks into the valley. You can click the image below for the full annotated version.

It’s as perfect and diverse an example of the Martian landscape as one could hope for, and the false-color image (the flatter true-color version is here) has a special otherworldly beauty to it, which is only added to by the poignancy of this being the rover’s last shot. In fact, it didn’t even finish — a monochrome region in the lower left shows where it needed to add color next.

This isn’t technically the last image the rover sent, though. As the fatal dust storm closed in, Opportunity sent one last thumbnail for an image that never went out: its last glimpse of the sun.

After this the dust cloud so completely covered the sun that Opportunity was enveloped in pitch darkness, as its true last transmission showed:

All the sparkles and dots are just noise from the image sensor. It would have been complete dark — and for weeks on end, considering the planetary scale of the storm.

Opportunity had a hell of a good run, lasting and traveling many times what it was expected to and exceeding even the wildest hopes of the team. That right up until its final day it was capturing beautiful and valuable data is testament to the robustness and care with which it was engineered.

Opportunity’s last Mars panorama is a showstopper

The Opportunity Mars Rover may be officially offline for good, but its legacy of science and imagery is ongoing — and NASA just shared the last (nearly) complete panorama the robot sent back before it was blanketed in dust.

After more than 5,000 days (or rather sols) on the Martian surface, Opportunity found itself in Endeavour Crater, specifically in Perseverance Valley on the western rim. For the last month of its active life, it systematically imaged its surroundings to create another of its many impressive panoramas.

Using the Pancam, which shoots sequentially through blue, green, and deep red (near-infrared) filters, it snapped 354 images of the area, capturing a broad variety of terrain as well as bits of itself and its tracks into the valley. You can click the image below for the full annotated version.

It’s as perfect and diverse an example of the Martian landscape as one could hope for, and the false-color image (the flatter true-color version is here) has a special otherworldly beauty to it, which is only added to by the poignancy of this being the rover’s last shot. In fact, it didn’t even finish — a monochrome region in the lower left shows where it needed to add color next.

This isn’t technically the last image the rover sent, though. As the fatal dust storm closed in, Opportunity sent one last thumbnail for an image that never went out: its last glimpse of the sun.

After this the dust cloud so completely covered the sun that Opportunity was enveloped in pitch darkness, as its true last transmission showed:

All the sparkles and dots are just noise from the image sensor. It would have been complete dark — and for weeks on end, considering the planetary scale of the storm.

Opportunity had a hell of a good run, lasting and traveling many times what it was expected to and exceeding even the wildest hopes of the team. That right up until its final day it was capturing beautiful and valuable data is testament to the robustness and care with which it was engineered.

SpaceX makes history by completing first private crew capsule mission

SpaceX’s Crew Dragon capsule has safely splashed down in the Atlantic, making it the first privately built crew-capable spacecraft ever to complete a mission to the International Space Station. It’s one of several firsts SpaceX plans this year, but Boeing is hot on its heels with a crew demonstrator of its own — and of course the real test is doing the same thing with astronauts aboard.

This mission, Demo-1, had SpaceX showing that its Crew Dragon capsule, an evolution of the cargo-bearing Dragon that has made numerous ISS deliveries, was complete and ready to take on its eponymous crew.

It took off early in the morning of March 2 (still March 1 on the West coast), circled the Earth 18 times, and eventually came to a stop (relatively speaking, of course) adjacent to the ISS, after which it approached and docked with the new International Docking Adapter. The 400 pounds of supplies were emptied, but the “anthropomorphic test device” known as Ripley — basically a space crash test dummy — stayed in her seat on board.

(It’s also worth noting that the Falcon 9 first stage that took the capsule to the edge of the atmosphere landed autonomously on a drone ship.)

Five days later — very early this morning — the craft disengaged from the ISS and began the process of deorbiting. It landed on schedule at about 8:45 in the morning Eastern time.

It’s a huge validation of NASA’s Commercial Crew Program, and of course a triumph for SpaceX, which not only made and launched a functioning crew spacecraft, but did so before its rival Boeing. That said, it isn’t winner take all — the two spacecraft could very well exist in healthy competition as crewed missions to space become more and more common.

Expect to see a report on the mission soon after SpaceX and NASA have had time to debrief and examine the craft (and Ripley).

SpaceX launches first Crew Dragon capsule mission in preparation for astronaut flights

SpaceX caught itself a “W” early this morning with a successful launch of the Falcon 9 rocket with Crew Dragon capsule. Crew Dragon represents SpaceX’s first spacecraft meant to transfer humans to and from the International Space Station. This flight is the final test check for the spacecraft, and will include launch, docking with the ISS, and reentry into the Earth’s atmosphere for recovery.

Thus far, SpaceX has completed a successful launch of the Crew Dragon, complete with a test dummy and a very high-tech zero-g indicator.

Tomorrow morning, the craft will attempt to dock with the International Space Station, and after that, it will attempt re-entry.

NASA gave SpaceX approval for the launch earlier this week.

In case you missed the live stream last night, you can watch the full stream below:

SpaceX’s Crew Dragon makes its first orbital launch tonight

After years of development and delays, SpaceX’s Crew Dragon is ready to launch into orbit. It’s the first commercially built and operated crewed spacecraft ever to do so, and represents in many ways the public-private partnership that could define the future of spaceflight.

Launch is set for just before midnight Pacific time — 2:49 Eastern time in Cape Canaveral, where the Falcon 9 carrying the Crew Dragon capsule will take off from. It’s using Launchpad 39A at Kennedy Space Center, which previously hosted Apollo missions and more recently SpaceX’s momentous Falcon Heavy launch. Feel free to relive that moment with us, while you’re here:

The capsule has been the work of many years and billions of dollars: an adaptation of the company’s Dragon capsule, but with much of its cargo space converted to a spacious crew compartment. It can seat seven if necessary but given the actual needs of the International Space Station, it is more likely to carry 2 or 3 people and a load of supplies.

Of course it had to meet extremely stringent safety requirements, with an emergency escape system, redundant thrusters and parachutes, newly designed spacesuits, more intuitive and modern control methods, and so on.

Crew Dragon interior, with “Ripley.”

It’s a huge technological jump over the Russian Soyuz capsule that has been the only method to get humans to space for the last 8 years, since the Shuttle program was grounded for good. But one thing Dragon doesn’t have is the Soyuz’s exemplary flight record. The latter may look like an aircraft cockpit shrunk down to induce claustrophobia, but it has proven itself over and over for decades. The shock produced by a recent aborted launch and the quickness with which the Soyuz resumed service are testament to the confidence it has engendered in its users.

But for a number of reasons the U.S. can’t stay beholden to Russia for access to space, and at any rate the commercial spaceflight companies were going to send people up there anyway. So NASA dedicated a major portion of its budget to funding a new crew capsule, pitting SpaceX and Boeing against one another.

SpaceX has had the best of Boeing for the most part, progressing through numerous tests and milestones, not exactly quickly but with fewer delays than its competitor. Test flights originally scheduled for 2016 are only just now beginning to take place. Boeing’s Starliner doesn’t have a launch date yet but it’s expected to be this summer.

Tonight’s test (“Demo-1”) is the first time the Crew Dragon will fly to space; suborbital flights and landing tests have already taken place, but this is a dry run of the real thing. Well, not completely dry: the capsule is carrying 400 pounds of supplies to the station and will return with some science experiments on board.

After launch, it should take about 11 minutes for the capsule to detach from the first and second stages of the Falcon 9 rocket. It docks about 27 hours later, early Sunday morning, and the crew will be able to get at the goodies just in time for brunch, if for some reason they’re operating on East Coast time.

SpaceX will be live streaming the launch as usual starting shortly before takeoff; you can watch it right here:

Watch OneWeb’s first six global internet satellites launch today

After four years and more than $2 billion in funding, OneWeb is ready to launch the first six satellites out of a planned constellation of 650 with which it plans to blanket the world in broadband. The Arianespace-operated Soyuz rocket will take off at 1:37 Pacific time from Guiana Space Center. You can watch it live at OneWeb’s site here.

OneWeb is one of several companies that aims to connect the world with a few hundred or thousand satellites, and certainly the most well-funded — SoftBank is the biggest investor, but Virgin Group, Coca Cola, Bharti Group, Qualcomm, and Airbus have all chipped in.

The company’s plan is to launch a total of 900 (650 at first) satellites to about a 1,100-kilometer low Earth orbit, from which it says it will be able to provide broadband to practically anywhere on Earth — anywhere you can put a base station, anyway. Much cheaper and better than existing satellite connectivity, which is expensive and slow.

Sound familiar? Of course SpaceX’s side project Starlink has similar ambitions, with an even greater number of satellites planned, and Swarm is aiming for a smaller constellation of smaller satellites for low-cost access. And Ubiquitilink just announced this week that its unique technology will remove the need for base stations and beam satellite connections directly to ordinary phones. And they’ve all launched satellites already!

The launch vehicle fueling today at GSC.

OneWeb has faced numerous delays; the whole constellation was originally planned to be in place by the end of 2019, which is impossible at this point. But delays are the name of the game in ambitious space-based businesses, and OneWeb hasn’t been just procrastinating; it’s been girding itself for mass production, raising funds to set up launch contracts, and improving the satellites themselves. Its updated schedule, as it states in the mission summary: “OneWeb will begin customer demos in 2020 and provide global, 24-hour coverage to customers in 2021.”

At a reported cost of about a million dollars per satellite — twice the projected cost in 2015 — just building and testing the constellation will likely rub up against a billion dollars, and that’s not counting launch costs. But no one ever said it would be cheap. In fact, they probably said it would be unbelievably expensive. That’s why SoftBank and the other investors are “committing to a lot more capital,” as CEO Adrián Steckel told the Financial times last month.

The company also announced its first big deal with a telecom; Talia, which provides connectivity in Africa and the Middle East, signed on to use OneWeb’s services starting in 2021.

Soyuz launches could carry more than 30 of these satellites each, meaning it would take at least 20 to put the whole constellation in orbit. This first launch, however, only has six aboard; the other spots on board the mass launch system have dummy payloads to simulate how it should be going forward.

A OneWeb representative told me that this launch is meant to “verify the satellite design and validate the end to end system,” which is probably a good idea before sending up 600 more. That means OneWeb will be testing and tracking these six birds for the next few months and making sure the connection with ground stations and other aspects of the whole system are functioning properly.

Full payloads will start in the fall, after OneWeb opens its (much-delayed) production facility just outside Kennedy Space Center in Florida.

You can watch the launch at OneWeb’s site here.

Ubiquitilink advance means every phone is now a satellite phone

Last month I wrote about Ubiquitilink, which promised, through undisclosed means, it was on the verge of providing a sort of global satellite-based roaming service. But how, I asked? (Wait, they told me.) Turns out our phones are capable of a lot more than we think: they can reach satellites acting as cell towers in orbit just fine, and the company just proved it.

Utilizing a constellation of satellites in low Earth orbit, Ubiquitilink claimed during a briefing at Mobile World Congress in Barcelona that pretty much any phone from the last decade should be able to text and do other low-bandwidth tasks from anywhere, even in the middle of the ocean or deep in the Himalayas. Literally (though eventually) anywhere and any time.

Surely not, I hear you saying. My phone, that can barely get a signal on some blocks of my neighborhood, or in that one corner of the living room, can’t possibly send and receive data from space… can it?

“That’s the great thing — everybody’s instinct indicates that’s the case,” said Ubiquitilink founder Charles Miller. “But if you look at the fundamentals of the RF [radio frequency] link, it’s easier than you think.”

The issue, he explained, isn’t really that the phone lacks power. The limits of reception and wireless networks are defined much more by architecture and geology than plain physics. When an RF transmitter, even a small one, has a clear shot straight up, it can travel very far indeed.

Space towers

It’s not quite as easy as that, however; there are changes that need to be made, just not anything complex or expensive like special satellite antennas or base stations. If you know that modifying the phone is a non-starter, you have to work with the hardware you’ve got. But everything else can be shaped accordingly, Miller said – three things in particular.

  1. Lower the orbit. There are limits to what’s practical as far as the distance involved and the complications it brings. The orbit neds to be under 500 kilometers, or about 310 miles. That’s definitely low — geosynchronous is ten times higher — but it’s not crazy either. Some of SpaceX’s Starlink communications satellites are aiming for a similar orbit.
  2. Narrow the beam. The low orbit and other limitations mean that a given satellite can only cover a small area at a time. This isn’t just blasting out data like a GPS satellite, or communicating with a specialized ground system like a dish that can reorient itself. So on the ground you’ll be looking at a 45 degree arc, meaning you can use a satellite that’s within a 45-degree-wide cone above you.
  3. Lengthen the wavelength. Here simple physics come into play: generally, the shorter the wavelength, the less transparent the atmosphere is to it. So you want to use bands on the long (lower Hz) side of the radio spectrum to make sure you maximize propagation.

Having adjusted for these things, an ordinary phone can contact and trade information with a satellite with its standard wireless chip and power budget. But there’s one more obstacle, one Ubiquitilink spent a great deal of time figuring out.

Although a phone and satellite can reach one another reliably, a delay and doppler shift in the signal due to the speeds and distances involved are inescapable. Turns out the software that runs towers and wireless chips isn’t suited for this; the timings built into the code assume the distance will be less than 30 km, since the curvature of the Earth generally prevents transmitting further than that.

So Ubiquitilink modified the standard wireless stacks to account for this, something Miller said no one else had done.

“After my guys came back and told me they’d done this, I said, well let’s go validate it,” he told me. “We went to NASA and JPL and asked what they thought. Everybody’s gut reaction was ‘well, this won’t work,’ but then afterwards they just said ‘well, it works.’ ”

The theory became a reality earlier this year after Ubiquitilink launched their prototype satellites. They successfully made a two-way 2G connection between an ordinary ground device and the satellite, proving that the signal not only gets there and back, but that its doppler and delay distortions can be rectified on the fly.

“Our first tests demonstrated that we offset the doppler shift and time delay. Everything else is leveraging commercial software,” Miller said, though he quickly added: “To be clear, there’s plenty more work to be done, but it isn’t anything that’s new technology. It’s good solid hardcore engineering, building nanosats and that sort of thing.”

Since his previous company was Nanoracks and he’s been in the business for decades, he’s qualified to be confident on this part. It’ll be a lot of work and a lot of money, but they should be launching their first real satellites this summer. (And it’s all patented, he noted.)

Global roaming

The way the business will work is remarkably simple given the complexity of the product. Because the satellites operate on modified but mostly ordinary off-the-shelf software and connect to phones with no modifications necessary, Ubiquitilink will essentially work as a worldwide roaming operator that mobile networks will pay for access to. (Disclosure: Verizon, obviously a mobile network, owns TechCrunch, and for all I know will use this tech eventually. It’s not involved with any editorial decisions.)

Normally, if you’re a subscriber of network X, and you’re visiting a country where X has no coverage, X will have an agreement with network Y, which connects you for a fee. There are hundreds of these deals in play at any given time, and Ubiquitilink would just be one more — except its coverage will eventually be global. Maybe you can’t reach X or Y, you’ll always be able to reach U.

The speeds and services available will depend on what mobile networks want. Not everyone wants or needs the same thing, of course, and a 3G fallback might be practical where an LTE connection is less so. But the common denominator will be data enough to send and receive text at the least.

It’s worth noting also that this connection will be in some crucial ways indistinguishable from other connections: it won’t affect encryption, for instance.

This will of course necessitate at least a thousand satellites, by Miller’s count. But in the meantime limited service will also be available in the form of timed passes — you’ll have no signal for 55 minutes, then signal for five, during which you can send and receive what may be a critical text or location. This is envisioned as a specialty service at first, then as more satellites join the constellation, that window expands until it’s 24/7 and across the whole face of the planet, and it becomes a normal consumer good.

Emergency fallback

While your network provider will probably charge you the usual arm and leg for global roaming on demand (it’s their prerogative), there are some services Ubiquitilink will provide for free; the value of a global communication system is not lost on Miller.

“Nobody should ever die because the phone in their pocket doesn’t have signal,” he said. “If you break down in the middle of Death Valley you should be able to text 911. Our vision is this is a universal service for emergency responders and global E-911 texting. We’re not going to charge for that.”

An emergency broadcast system when networks are down is also being planned — power outages following disasters are times when people are likely to panic or be struck by a follow-up disaster like a tsunami or flooding, and reliable communications at those times could save thousands and vastly improve recovery efforts.

“We don’t want to make money off saving people’s lives, that’s just a benefit of implementing this system, and the way it should be,” Miller said.

It’s a whole lot of promises, but the team and the tech seem capable of backing them up. Initial testing is complete and birds are in the air — now it’s a matter of launching the next thousand or so.

Watch SpaceX launch the first private moon landing mission (Update: Success!)

Update: Success! All payloads deployed successfully. Now we just have to wait on that moon landing…

Calling all lunatics — the first fully private moon landing mission is about to take off from Cape Canaveral. A SpaceX Falcon 9 rocket carrying SpaceIL’s Beresheet lander is set to take off about an hour from now, at 5:45 Pacific time. Watch it right here!

The launch isn’t just the lander — in fact, the lander is only a small part of the payload. The primary passenger is Nusantara Satu, an Indian communications satellite that will provide connectivity to rural areas in the country difficult to reach by ordinary means. Once it gets to its geosynchronous orbit it will deploy the U.S. Air Force Research Lab’s S5 experimental satellite, which will track objects and debris around that altitude.

But by the time those deploy (about 44 minutes after launch), Beresheet will be well on its way; it’s entering a transfer orbit with an eye to lunar insertion and touchdown on the surface there in April.

Should it accomplish its task, the Israeli satellite will be the first private mission to land on the moon. So far it’s just been us, Russia and China — others have passed by or orbited, to be sure, but no one has made a soft landing and taken pictures, as Beresheet intends to do.

It was originally planned to do this for Google’s ill-fated Lunar Xprize, which went unclaimed despite serious interest — the truth is it was just a bit too ambitious for its own good. But several of the companies and teams that entered are still going strong, moving forward at their own paces.

At around $100 million, Beresheet will be the cheapest moon landing mission by far, and as the first to do so on a privately engineered and built (not to mention previously flown) rocket, as a secondary payload and with a private launch coordinator… let’s just say that it’s likely to set records all over the place if all goes well.

The first thing that needs to happen, of course, is takeoff. So tune in below at 5:45:

Deploy the space harpoon

Watch out, starwhales. There’s a new weapon for the interstellar dwellers whom you threaten with your planet-crushing gigaflippers, undergoing testing as we speak. This small-scale version may only be good for removing dangerous orbital debris, but in time it will pierce your hypercarbon hides and irredeemable sun-hearts.

Literally a space harpoon. (Credit: Airbus)

However, it would be irresponsible of me to speculate beyond what is possible today with the technology, so let a summary of the harpoon’s present capabilities suffice.

The space harpoon is part of the RemoveDEBRIS project, a multi-organization European effort to create and test methods of reducing space debris. There are thousands of little pieces of who knows what clogging up our orbital neighborhood, ranging in size from microscopic to potentially catastrophic.

There are as many ways to take down these rogue items as there are sizes and shapes of space junk; perhaps it’s enough to use a laser to edge a small piece down toward orbital decay, but larger items require more hands-on solutions. And seemingly all nautical in origin: RemoveDEBRIS has a net, a sail and a harpoon. No cannon?

You can see how the three items are meant to operate here:

The harpoon is meant for larger targets, for example full-size satellites that have malfunctioned and are drifting from their orbit. A simple mass driver could knock them toward the Earth, but capturing them and controlling descent is a more controlled technique.

While an ordinary harpoon would simply be hurled by the likes of Queequeg or Dagoo, in space it’s a bit different. Sadly it’s impractical to suit up a harpooner for EVA missions. So the whole thing has to be automated. Fortunately the organization is also testing computer vision systems that can identify and track targets. From there it’s just a matter of firing the harpoon at it and reeling it in, which is what the satellite demonstrated today.

This Airbus-designed little item is much like a toggling harpoon, which has a piece that flips out once it pierces the target. Obviously it’s a single-use device, but it’s not particularly large and several could be deployed on different interception orbits at once. Once reeled in, a drag sail (seen in the video above) could be deployed to hasten reentry. The whole thing could be done with little or no propellant, which greatly simplifies operation.

Obviously it’s not yet a threat to the starwhales. But we’ll get there. We’ll get those monsters good one day.